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Problem 1
Consider a flat FRW universe, governed by the metric

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
, (1.1)

filled with only relativistic material and a cosmological constant Λ; say the space has a big bang at
coordinate time t = 0. We are to calculate the cosmic scale factor a2(t) up to an overall normalization
and describe the asymptotic motion of photon travelling along the positive x̂-axis.

Let us begin by quickly reviewing the Einstein equations for this universe1. We note
that the components of the Ricci tensor and scalar curvature for this metric are

Rtt = 3
ä

a
, Rij = −δij

(
aȧ + 2ȧ2

)
, and R = −6

(
ä

a
+

ȧ2

a2

)
. (1.2)

And recall that a (single-component) perfect fluid with equation of state p = wρ has
a stress energy tensor given by

T a
b = ρ




−1 0 0 0
0 w 0 0
0 0 w 0
0 0 0 w


 . (1.3)

The Einstein field equations are then

Rab − 1
2
gabR = −8πG

(
Tab − Λ

8πG
gab

)
, (1.4)

where Λ is the cosmological constant2. Writing out the ‘tt’ Einstein equation, we find

3
ä

a
− 3

(
ä

a
+

ȧ2

a2

)
= −3

ȧ2

a2
= −8πG

(
ρ +

Λ
8πG

)
, (1.5)

which implies

∴ ȧ2 =
8πG

3
a2

(
ρ +

Λ
8πG

)
. (1.6)

It turns out that we won’t actually need any of the other Einstein equations.
The last equation we need relates the energy density to the cosmic scale factor. This

comes about from the conservation of energy3,
d

da

(
ρa3

)
= −3pa2. (1.7)

This equation is implied by the divergencelessness of Tab, which is itself just a re-
statement of the Bianchi identity for Gab.

At any rate, we can use the conservation of energy for a fluid with equation of state
p = wρ to determine how ρ varies as a function of a(t). We see

d

da

(
ρa3

)
= 3a2ρ + a3 dρ

da
= −3wρa2,

=⇒ dρ

da
= −3(1 + w)a−1ρ.

Solving this equation by simple integration, we have

log(ρ) = −3(1 + w) log(a) + const. =⇒ ρ ∝ a−3(1+w). (1.8)
‘óπερ ’έδει πoι�ησαι

1Because we are more familiar with the notation used by Weinberg—despite its oddities—our derivations will follow
his. However, we will use a(t) to denote the cosmic scale factor so as to avoid confusion with R.

2It is quite common to see Λ defined with the 8πG absorbed into its definition. We prefer to keep it structurally more
similar to the metric than the stress-energy (which follows from the paradigm that Λ is a metric parameter as opposed to
a vacuum energy).

3That this is a statement of the conservation of energy can be understood as follows: the amount of energy in a comoving
box of size a3 is just ρa3; because we consider only a perfect fluid, as the box expands, the only leakage arises from the
‘pressure’ at the sides of the box—which has surface area 6a2. However, only half of this is lost because only half of the
pressure along the faces of the box is due to ‘outgoing’ flow; so there is a net loss of 3pa2 worth of energy.

1
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Using the fact that a relativistic fluid has an equation of state w = 1
3 , we observe that

ρ =
3β2

8πG
a−4, (1.9)

where β2 is a constant of integration.
Putting this into the Einstein equation (1.6),

ȧ2 =
8πG

3
a2

(
3β2

8πG
a−4 +

Λ
8πG

)
=

1
a2

(
β2 +

Λ
3

a4

)
. (1.10)

This ordinary differential equation can be integrated directly4.

t =
∫ t

0

dt =

a∫

0

a′ da′√
β2 + Λ

3 a′4
=

√
3

4Λ
arcsinh

(
a2

β

√
Λ
3

)
;

∴ a2(t) = β

√
3
Λ

sinh

(
2t

√
Λ
3

)
. (1.11)
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Let us now check that our solution agrees with the required boundary conditions. First,
a(t = 0) = 0, as required; this shows that we were not unjustified in our organization
of constants of integration when solving the differential equations above. Also, at
very early times or when Λ is very small,

a2(t) = β

√
3
Λ

sinh

(
2t

√
Λ
3

)
≈ 2βt, for t → 0, (1.12)

which is precisely what we would have obtained if setting Λ = 0 in (1.6). Similarly,
in late times

a2(t) ≈ β

√
3

4Λ
e2t
√

Λ/3, for t →∞, (1.13)

which is what we would have obtained if we had neglected the radiation density ρ
altogether in equation (1.6).

Now, the motion of a photon in this space is entirely controlled by the condition that
its worldline is null. For motion along the x̂-axis, this is simply the statement that

0 = −dt2 + a2(t)dx2, =⇒ dx =
dt

a(t)
. (1.14)

Again, this can be integrated—at least formally—so that if motion starts at the origin
at time t = 0 then

x(t) =

t∫

0

dt′

a(t′)
. (1.15)

Although this integral can be done analytically in terms of hypergeometric functions—
(what can’t?)—it is far from illuminating. Therefore, rather than computing the light
trajectory x(t) analytically for a generic two-component universe, let us analyze its
motion in the asymptotic regions of interest.

We showed above that for very early times,

a(t) ≈
√

2βt, =⇒ x(t) =
√

2
β

√
t. (1.16)

Comparing this with the notation of the problem set, we have
√

2
β

=
(

3
8πGB

)1/4

=⇒ B =
3β2

8πG
; (1.17)

so the problem set’s B is such that ρ = Ba−4—which we could have guessed.

4Several horrendous integrals appear in this problem set; most were solved with the aide of a computer algebra package.
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Alternatively, for late times we should use the approximation (1.13) which gives

∆x =
(

4Λ
3β2

)1/4 ∫ ti+∆t

ti

dt′ e−t′
√

Λ/3 =
(

12
β2Λ

)1/4

e−ti

√
Λ/3

(
1− e−∆t

√
Λ/3

)
. (1.18)

This implies that at late times the photon will essentially freeze it’s position—advancing
exponentially slower and slower as coordinate time goes to infinity. Indeed, if ti is a
time late enough5 for the universe to be virtually dominated by Λ, then within the
infinitude of time to the end of the universe, the photon will travel only the finite
distance

x(∞)− x(ti) =
(

12
β2Λ

)
e−ti

√
Λ/3. (1.19)

Problem 2
We are to study a closed FRW universe which is ‘radiation dominated for only a negligibly short

fraction of its life’ and determine how many times a photon released at the big bang can encircle the
universe before the big crunch. Although it is quite likely that the author of the problem had a mostly-
matter-dominant universe in mind, there are certainly other ways of interpreting the problem6. We will
consider here only the most obvious interpretation of the problem—the one of a universe with matter
and relativistic energy components.

Unfortunately, our analysis in problem 1 above was not sufficiently general to consider
a closed universe with the metric

ds2 = −dt2 + a2(t)
{

dr2

1− kr2
+ r2dθ2 + r2 sin2(θ)dϕ2

}
, (2.1)

where k = 1 for a closed universe. Therefore, we will need to quickly generalize that
discussion to include k 6= 0.

Notice that the coordinate ‘r’ here is not a radius in the sense of a usual spherical
geometry: by setting k = 1 we are forced to restrict r to the range r ∈ [−1, 1]—it is
an angular coordinate. Indeed, that k = 1 describes the geometry of a three-sphere
is made manifest by the change of variables r = sin(λ) so that the metric becomes

ds2 = −dt2 + a2(t)
(
dλ2 + sin2(λ)dθ2 + sin2(λ) sin2(θ)dϕ2

)
, (2.2)

which by inspection is the metric of a three-sphere with fixed radius a(t).
The only reason why we so digress is to clarify that fixed-λ and fixed-θ trajectories are

only geodesics when λ = θ = π/2—otherwise the orbit will not describe a great-circle
on the sphere. The moral is that if we would like to study simple photon geodesics
in a closed spacetime, we must set λ = θ = π/2—or, equivalently, we must set the
coordinate r → 1.

Now, let us return to the metric (2.1) and derive the Einstein field equations. If we write
the metric in the form

ds2 = −dt2 + a2(t)g̃jkdxjdxk, (2.3)

then we find that

Rtt = 3
ä

a
, Rij = −g̃ij

(
aȧ + 2ȧ2 + 2k

)
, and R = −6

(
ä

a
+

ȧ2

a2
+

k

a2

)
. (2.4)

Now, the universe under investigation has a stress-energy tensor which is the sum of
those for ‘radiation’ (w = 1

3 ) and ‘matter’ (w = 0) components. Therefore, like
above, the ‘tt’-Einstein equation is simply

3
(

ȧ2

a2
+

k

a2

)
= 8πG (ρm + ρr) , (2.5)

which implies

∴ ȧ2 =
8πG

3
a2 (ρm + ρr)− k, (2.6)

5This happens approximately when the small angle expansion of sinh breaks down: when t ∼
q

3
4Λ

.
6Consider, for example a universe with radiation and a w = − 1

2
quintessence field: such a universe would certainly

have the property that radiation is dominant for a negligibly short time in the early/late universe.
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where ρm and ρr are the densities of matter and radiation components of the universe,
respectively.

In problem 1 equation (1.8) we derived the relationship ρ ∝ a−3(1+w) using only the
conservation of energy for a perfect fluid. This therefore most certainly applies for
both matter and radiation components of the universe. Expressing the constants of
proportionality as

ρm =
2β

8πG
a−3 and ρr =

3ζ

8πG
a−4, (2.7)

the Einstein equation becomes

ȧ2 =
β

a
+

ζ

a2
− k. (2.8)

This differential equation is generally solvable in terms of hypergeometric functions, but
these are far from enlightening. Rather, we are told to consider the limit that the
universe is radiation-dominated for a vanishingly small fraction of its lifetime. This
is equivalent to considering ‘the age of the universe’ to consist almost entirely of that
time for which β/a À ζ/a2. In this limit, for a closed universe, we have

ȧ2 =
β

a
− 1. (2.9)

This differential equation can be solved by a clever trick: we know that 1. a(t) has
a maximum at a(t) = β—because then ȧ = 0—and 2. that a(t0) = a(tf ) = 0.
Therefore, we are free to parameterize a = β

2 (1 − cos η) for some new parameter η.
In terms of η, we find that

ȧ2 =
1

1− cos η
(2− 1 + cos η) =

1 + cos η

1− cos η
=

1− cos2 η

(1− cos η)2
=

sin2 η

(1− cos η)2
; (2.10)

∴ da

dt
=

sin η

1− cos η
. (2.11)

Notice that t and η are related by the equation
dt

dη
=

dt

da

da

dη
=

1− cos η

sin η

β

2
sin η =

β

2
(1− cos η) = a(η). (2.12)

We are now prepared to determine how many times a photon released at the big bang
can encircle the universe before the big crunch. As described above, geodesics which
encircle the universe are those for which r = 1, θ = π/2 in terms of the coordinates
of the metric (2.1). Therefore, the condition for a null light ray is simply

ds2 = 0 = −dt2 + a2(t)dϕ2, =⇒ dϕ =
dt

a(t)
. (2.13)

The total angular distance such a photon can travel during the total time of the universe
is then given by

ϕtot =
∫

dϕ =

t=tf∫

t=0

dt

a(t)
=

∫ 2π

0

dt

dη

dη

a(η)
=

∫ 2π

0

a(η)
a(η)

dη = 2π. (2.14)
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Problem 3
We are asked to study the asymptotic evolution of a universe filled with matter together with another

form of energy7, termed ‘quintessence’ with an ‘exotic’ equation of state pQ = wρQ.
a. We are to determine the equation of state for which quintessence energy density will eventually

dominate the universe.

In problem 1, we worked out the dependence of an energy density component in terms of
the cosmic scale factor function a(t) and the component’s equation of state w (1.8):

ρ ∝ a(t)−3(1+w). (3.b.1)

Matter, with equation of state wm = 0 is easily seen to evolve according to ρm ∝
a(t)−3. Therefore, any energy component with equation of state w < 0 will eventually
dominate over matter—as a(t) becomes sufficiently large at late times.

b. We are to solve for a(t) assuming a universe in which quintessence dominates, and find the condition
which the equation of state must satisfy so that a(t) remains finite for any finite time.

Assuming that that quintessence is the dominant source of energy density in the universe,
we may safely ignore the matter and radiation contributions to Einstein’s equation;
then, in accordance with (1.6) and (1.8), we find

ȧ2(t) =
8πG

3
a2ρQ ≡ β2a−(1+3w)(t). (3.c.1)

This implies ∫
a(1+3w)/2da = β

∫
dt. (3.c.2)

Now, there are three relevant cases to consider:
• If w > −1, this system can be integrated directly: setting a(0) = 08, we obtain

a(t) ∝ t2/(3(1+w)) for w > −1. (3.c.3)

• When w = −1, we have
∫ a

a0

da′

a′
= β

∫ t

0

dt′ = log
(

a(t)
a0

)
, =⇒ a(t) = a0e

βt for w = −1. (3.c.4)

Notice that this agrees with our results obtained above for a universe with a
cosmological constant (for which w = −1).

• The (pathological) case of w < −1, a bit more care must be taken to evaluate
the integral. We find

∫ a

a0

a′(1+3w)/2da′ = β, t =⇒ a(t) ∝
{

3(1 + w)
2

t + a
3(1+w)/2
0

}2/(3(1+w))

, (3.c.5)

and bearing in mind that w < −1, this has the structure of

a(t) ∝ 1

(η − ζt)1/ζ
for w < −1. (3.c.6)

Clearly, for w < −1, a(t) diverges in finite time.

c. We are asked to determine the condition for which the universe has a future horizon.

The null condition on the worldline of a photon travelling in, e.g., the x̂-direction is

ds2 = 0 = −dt2 + a2(t)dx2, =⇒ dx =
dt

a(t)
. (3.d.1)

7The problem explicitly calls this exotic energy density quintessence despite it having nothing at all to do with a model
of quintessence. Indeed, there are no models of quintessence for which w < −1, but these are considered here anyway.

8Actually, this is probably not the boundary conditions we would like to set: because the early universe will be either
matter or radiation dominated, it would be more natural to integrate from some some value a(t0) from whence quintessence
dominates. This, however, would not change our primary results.
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Therefore, the coordinate distance which a photon can travel is given by

x(t = ∞)− xi =
∫ ∞

t0

dt

a(t)
. (3.d.2)

It is obvious to anyone with an education including first-semester calculus that this
integral is finite only if a(t) ∝ tλ for λ > 1—and finiteness of the total distance
travelled during an infinite time span indicates the existence of a horizon. Using our
work above, we see that there is a horizon if

2
3(1 + w)

> 1, =⇒ w < −1
3
. (3.d.3)
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